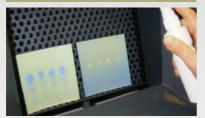

Plant Biomarker Pattern Screening Programme for Detection of Phytochemical Differences in Plants Exposed to Stress

Trine F. Christensen¹, Brigitte Diedrichsen¹, Anne Adsersen² (ad@dfh.dk), Jan Buch Andersen³ (jba@biotechline.dk) & Helle Weber Ravn¹ (her@dmu.dk) ¹National Environmental Research Institute (NERI), Dept. of Terrestrial Ecology, Vejlsovej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark, Tel.: +45 8920 1400, Fax: +45 8920 1413 ²The Royal Danish School of Pharmacy, Dept. of Medicinal Chemistry, Universitetsparken 2, DK-2100 Copenhagen Ø., Denmark, Tel.: +45 3530 6000, Fax: +45 3530 6040 ³Biotech Line AS, Industrivej 3, P.O. Box 60, DK-3550 Slangerup, Denmark, Tel.: +45 7027 9920

Introduction

Method

Environmental stress is a well-known phenomenon to organisms, especially plants. The different kinds of stress can be divided into abiotic and biotic stress


When a plant is exposed to stress, phytochemical changes appear. It is possible to detect phytochemical changes before morphological changes, if they are present. The phytochemical changes depend on the stress type, the concentration and the extent of exposure

A new method for detection of biomarkers has been developed. The method is based on the detection of a reproducible biomarker pattern, consisting of at least two biomarkers, in exposed plant material compared with non-exposed plant material.

Biomarkers are indicators, signalling changes in the phytochemical composition of the plant. The method can be used as an early warning system, where the phytochemical response to a given stress exposure appears before morphological changes, as well as a simple tool to determine whether plants have been exposed to a specific stress (1). The determination of a biomarker pattern can be used to investigate plants exposed to stress compared with nonexposed plants and forms the basis of the application of the developed screening programme.

Concept

A screening programme is developed to investigate phytochemical differences in plants exposed to stress compared with non-exposed plants

Screening process

Sample preparation

Application on stationary phase (TLC-plate)

Development in mobile phase Derivatization with chemical reagent

Detection of phytochemical differences

Evaluation and documentation of phytochemical differences (Plant biomarker pattern)

The method used to screen for phytochemical differences is Thin Layer Chromatography (TLC). In the mobile phase passes over a stationary phase

in such a way that a mixture of substances is separated into its individual components on the basis of their polarity and chemical structure. Substances separated on a stationary phase, that are not directly visible and do not react to UV light, can be detected by reaction with derivatization reagents (2)

Modern Thin Layer Chromatography as a method is: - simple

- highly flexible - inexpensive
- versatile.

TLC is suitable in the investigation of phytochemical differences in plants.

Sample preparation

Plant extracts used for screening are obtained using fresh, frozen or freeze-dried plant material.

The plant material is either pressed or extracted with suitable solvents and filtered or centrifuged before application on stationary phase (TLC-plate).

Screening programme

The screening programme covers the most general groups of compounds found in plants. The following groups of phytochemical compounds are included in the programme: Unspecific compounds, organic acids, lipids, phenolic compounds, carbohydrates, terpenoids and N-, S- and P-containing compounds.

These groups of phytochemial compounds are screened by use of different stationary phases, mobile phases and derivatization reagents. Each group of compounds is covered by several derivatization reagents in order to be able to verify the results obtained with a single derivatization reagent.

TLC-systems

Stationary phases (TLC-plates)

HPTLC Aluminium sheets, Silica gel 60, Merck 1 05547 HPTLC Aluminium sheets, Silica gel 60 F254,

Merck 1.05548 TLC Aluminium sheets, Cellulose, Merck 1.05552 Mobile phases

1-butanol : acetic acid : water (4:1:5) (upper phase) 1-butanol : 50% formic acid (2:1) 2-propanol : acetic acid (2:1)

1-propanol : 25% ammonia (11:9)

Screening

groups of compounds and derivatization reagents Alcohols and phenolic compounds

Iron(III)chloride Carbohydrates

- Naphthoresorcinol sulphuric acid
- β-naphthol sulphuric acid
- Thymol sulphuric acid
- N-containing compounds Fluorescein – ammonia
- Ninhydrin
- Bismuth(III)nitrate potassium iodide Organic acids and lipids
 - Bromocresol green bromophenol blue -
 - potassium permanganate 2,7-dichlorofluorescein
- Eluorescein
- Rhodamine 6G
- Rhodamine B
- Bromocresol green
- P-containing compounds Ammonium molybdate Cobalt(II)chloride
- S-containing compounds
 - Methylene blue
- Palladium(II)chloride

Terpenoids

- Phosphoric acid Sulfuric acid
- Zinc chloride
- Several of the above-mentioned groups Vanillin – sulphuric acid
- Diphenylboric acid 2-aminoethylester
- Iodine potassium iodide Molybdatophosphoric acid
- Anisaldehyde sulfuric acid
 Silver nitrate ammonia

Evaluation

The TLC-plates are evaluated using advanced CAMAG TLC-equipment supported by The Danish Agricultural and Veterinary Research Council

Utility of the screening programme

The screening programme, in its present form or in a more simplified form, can be utilized in several different areas as a preliminary broad screening:

- · Analysis of organically- and conventionally cultivated plant foods
- · Demarcation of herbicide polluted areas
- Demarcation of herbicide exposure in spraving free zones close to water steams and lakes
- As a new tool for farmers to obtain an optimal effect using a reduced amount of herbicide
- · Monitoring of sulphur- and chemical stress resulting in the death of sea-grasses

Ravn (2001): An assay method and kit for testing biological material for exposure to stress using biomarkers. International Patent (PCT) application, priority data: PA 2000 00874, 30 may 2000 (WO 01/92879 A1).
 Harborne, J.B., Biochem. Syst. Ecol. (1999) 27, 335-367

ntal Res Institute (NERI) is a research institute affiliated to the Danish Ministry of the Environment.

NERI's mission is to provide a sound and informed scientific basis for environmental decisions making at the politic administrative and commercial

National Environmental Research Institute (NERI) Dept. of Terrestrial Ecology Vejlsovej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark Tlf.: +45 89 20 14 00 Fax +45 89 20 14 14 www.dmu.dk

In 2000 an international PCT patent application: "An assay method and kit for testing biological material for exposure to stress using biomarkers" (WO 01/92879 A1), PCT /DK01/00377) was filed at the European Patent Office with the purpose of international patent protection.